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Abstract-Two-dimensional, steady-state, compressible boundary layer and energy equations are solved 
numerically using finite difference method in cylindrical coordinates. The heat transfer from and to an 
isolated cylinder for cross-flow is calculated up to the separation point iteratively. The velocity and 
temperature profiles, and local Nusselt numbers around the cylinder are obtained for the constant wall 
temperature boundary condition at different oncoming velocities. The results are obtained for compressible 

and ineompressible flow and given in diagrams. 0 1998 Elsevier Science Ltd. All rights reserved. 

INfRODUCTlON 

The convective heat transfer from and to an isolated 
cylinder in crossflow is important in many engineering 
applications. A complicated heat transfer mechanism 
occurs around the cylinder and the problem has been 
concerned by a large number of investigators theor- 
etically and experimentally for several physical con- 
ditions. 

Early works were confined to incompressible adia- 
batic flows. In most of these studies, the boundary 
layer equations are solved by transforming to ordinary 
differential equations using transformations, series 
and integral methods. Schlichting [l] gives a com- 
prehensive review of these studies. Recent com- 
putational approaches may be classified into two 
groups. In one of these approaches the governing 
equations are simplified by using additional concepts 
such as stream function, velocity potential and 
vorticity. In the other approach the problem is solved 
in terms of the basic variables ; u, u, w and p. When 
solving the el1iptl.c equations the whole nodal values 
of variables are simultaneously calculated. Therefore, 
in solving the complete equations of viscous flow the 
first approach is preferred, because of less variables 
and numerous studies have been done to simulate the 
flow velocity flow fields [2, 31. 

When solving boundary layer equations however, 
which are parabolic, solution is started from one side 
of solution dom,ain and marched to the other side. 

t Author to whom correspondence should be addressed. 
Tel. : 00-90-312-23 17400. Fax : 00-90-3 12-2308434. E-mail : 
ataer@mikasa.mmf.gazi.edu.tr. 

The boundary layer equations are mostly solved using 
the second approach and Shyy [4] gives a review of 
algorithm used in the second approach. 

Beam and Warming [5] presented a method for the 
numerical solution of the compressible Navier-Stokes 
equations using an implicit finite-difference, non- 
iterative scheme. Das [6] presented an integral method 
for computing separated and reattached turbulent 
boundary layers for incompressible two-dimensional 
flows. Tchon and Paraschivoio [7], simulated the 
incompressible flow field around a moving airfoil 
using a noninertial stream function-vorticity for- 
mulation of the two-dimensional, unsteady Navier- 
Stokes equations. Karniadakis [8] investigated the 
unsteady forced convective heat transfer from an iso- 
lated cylinder in cross-flow for Reynolds numbers up 
to 200. Using spectral element method and various 
outflow boundary conditions for the velocity field, 
results are obtained from the numerical solution of 
Navier-Stokes and energy equations. Chen and Weng 
[9] solved the two-dimensional Navier-Stokes and 
energy equations for both incompressible and com- 
pressible flows numerically in the body-fitted coor- 
dinates for Reynolds numbers below 40. Results are 
obtained for the laminar flow over a heated cylinder. 

Zukauskas [lo] studied the heat transfer of a single 
tube in cross-flow experimentally in the range of 
Prandtl number from 0.7-500 and that of Reynolds 
number from l-2 x 106. Tanabe and Kashiwada [l l] 
studied heat transfer from a cylinder in crossflow 
experimentally for the constant wall temperature and 
constant heat flux boundary conditions. 

The results obtained from the solution of the two- 
dimensional complete Navier-Stokes equations in the 
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NOMENCLATURE 

specific heat at constant pressure 
[J kg-’ K-‘1 
tube diameter [m] 
thermal conductivity [w m-’ K -‘I 
Nusselt number [hd/k] 
pressure [N m-‘1 
radial coordinate [m] 
cylinder radius [m] 
gas constant [J kg-’ K -‘I 
Reynolds number (U,d/v) 
temperature [K] 
temperature of the oncoming fluid 

Kl 

TU cylinder wall temperature [K] 
u tangential velocity component [m SC’] 
u, oncoming velocity [m s-l] 

V radial velocity component [m s-‘I. 

Greek symbols 
6 hydrodynamic boundary layer 

thickness [m] 

6, thermal boundary layer thickness [m] 
0 angular coordinate [rad] 

/* dynamic viscosity [N s m-‘1 
V kinematic viscosity [m’ s-‘1 

P density [kg m-‘I. 

Fig. 1. Physical mechanism and coordinates 

literature are for low Reynolds numbers, because of 
the complexity of the wake flow behind the tube. At 
Reynolds number greater than 40 vortex path is 
formed behind the tube and in some of these studies 
body-fitted coordinate system is used. 

In this study, using finite difference approach two- 
dimensional boundary layer equations are so!ved 
numerically in cylindrical coordinates for com- 
pressible cross-flow across an isolated cylinder for 
different oncoming velocities. The velocity and tem- 
perature profiles and the local Nusselt numbers are 
obtained. 

Theory 
The physical mechanism and coordinate system is 

shown in Fig. 1. The predominant velocity component 
of the flow in the boundary layer is a tangential one. 
The pressure gradient in the radial direction is neg- 
ligible in comparison to angular pressure gradient. 
The angular pressure gradient is known from the invis- 
cid flow analysis initially and there are three 
unknowns, u, v and T, to be determined by the analy- 
sis. The radial component of equation of motion is 
completely ignored and the unknowns u, u and Tare 

determined by solving the equations of continuity, 
tangential component of equation of motion and 
energy equation for compressible flow. 

For the compressible flow continuity and the tan- 
gential component of the equation of motion are writ- 
ten as, respectively 

vu 
p va,+yz+y ( au u au 

> 
=-;g 

[ 

ah i au u I a% 
+p a,‘+y~-y’+,‘ae’ 

2 au 5 a i au v a~ 

+~zT+mi rz+;+aY 
( )I 

and the energy equation is written as 

(2) 

(3) 

In the analysis the effects of radiative heat transfer 
and buoyancy force are ignored. Eliminating density 
in the above equations using the perfect gas law the 
eligible form of equations for numerical treatment are 
stated as follows : 
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Fig. 2. Discretization of solution domain. 

NUMERICAL METHOD 

The solution domain used in the analysis is shown 
in Fig. 2. Considering an element and using the Taylor 
series expansion values of u and v at the central node 

(5) 
are linked to the nodes at the boundary of the element 
as follows : 

au a% (Aey 
u-gjAe+sB?2=u” (9) 

?!-!A,= ; 
0 

(10) 
W 

(6) 

au a2u (Ar); 
u+ %(A’), + s ~ = UN 

2 (11) 

a2u (Ar): 
u--$Ar),+GT=us (12) 

because it has the effect of stabilizing the flow about 
separation point, and the radial pressure gradient au 

dplar and a2T/ae2 are ignored. The boundary con- 
v- ,,Ae = v, (13) 

ditions are written as 

v- $(Ar), = v,. (14) 

u = 0, 0 ate=0 
Equations (4), (5) and (9)(14) are written in matrix 

l4 = 0, 11 = 0, T = T, at r = 0 @a,b,c) 

u = ZU, sinC), T = T, atr = r,, +6. (8d,e) 

Because of the viscosity of real fluids, on the front 
of the cylinder a laminar boundary layer develops and 
its thickness increases downstream. It is assumed that 
the heat conduction in the flow direction is negligible. 
The boundary layer equations are simplified by elim- 
inating density assuming that the air is an ideal gas. 

form for numerical solution as follows : 

K3 -KS K, Kz -K6 K4 -p -K, 
0 I/r 0 I/r 1 0 0 0 

10 0 -A0 0 0 0 A@/2 

00 0 10 0 0 -A0 

1 0 (Ah 0 0 0 (A432 0 

1 0 -(AT), 0 0 0 (Ar)f/2 0 

010 0 0 -A8 0 0 

_o 1 0 0 -(AT)~ 0 0 0 J 
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(15) 
11 0 0 

where the values of abbreviated matrix elements are 
written as : 

K = 
1 

E_!!_!e_ 
RT 3 r aT& ’ 

K7 =$ 

i au aT u azp i au ap u a2T 
+T~~-rp~----+~Tj+ rp ae ae 

2 

(16) 

The pressure, p in these equations is initially known 
and taken from the literature [lo]. Considering again 
the element in Fig. 2, the temperature at the central 
node is linked to the boundary nodes of the element 
as follows, 

c2 
0 

0 

-A6 

T 

aTpr 

a2 T/ar2 
ai-jae 1 = (20) 

where the following abbreviations are used : 

When the matrix equations (15) and (20) are solved 
for u, v and T, the discretized equations are obtained 
for numerical solution. Since the algebraic operations 
are tedious, u, v and T are directly calculated from 
equations (15) and (20) node by node using a matrix 
solver. 

Numerical operation is started from the stagnation 
point and marched downward. Depending on the 
oncoming velocity the appropriate step size in radial 
direction is determined by trial-and-error method. On 
the other hand, since the thickness of both the bound- 
ary layers initially are not known, the radial dimension 
of solution domain is determined iteratively. The 
dimension that satisfies au@ = 0 and aTi& = 0 at 
infinite is assumed to be appropriate. 

This matrix scheme has the following advantages : 

(1) 

(2) 

The derivative boundary conditions, related to 
the first or second derivative, are easily satisfied. 
If it is needed, in r-direction non-uniform grid 
dimensions can be introduced for stability. This 
may be done by setting (Ar)$ = (Ar)N/2 or 
(Ar)N = (Ar),/2. When this type of grid dimen- 
sions are introduced the boundary values of the 
grid become u, = f(ui,, + u~,~_ ,), uN = i(u,,, + 
%,,+ I )> v, = f(vi,, + vi,,_ ,>, etc. 

RESULTS 

i3’T (Ar); 
T+ $Ar)N + arz 2 = TN 

A thin tube with 10 mm diameter in cross flow 
(17) of air is considered. Calculations are made for two 

different cases : at first case the surface temperature of 

a2 T (Ar): 
T- g(Ar), + 2 2 = T, 

ar 
T- %AtI = T,. 

the tube is taken as 300 K as free stream temperature 

(18) is 900 K. In second case the tube temperature is 
assumed 900 K while the temperature of the free 
stream is 300 K. The physical properties of the air are 

(19) 
taken as a function of temperature and the related 
correlation are used in calculations. 

From the numerical solution of boundary layer and 
Equations (6) and (17)-( 19) are written in the matrix energy equations velocity, temperature fields and the 
form as local Nusselt numbers around the cylinder are 
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Fig. 3. Profiles of u component of velocity. 
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Fig. 4. Profiles of u component of velocity. 

obtained up to separation point. The tangential vel- 
ocity profiles in the boundary layer for different angu- 
lar positions are shown in Fig. 3 for 5 m s-r oncoming 
flow velocity. For the oncoming velocity of 100 m SC’ 
the tangential velocity profiles at different angular 
positions are also given in Fig. 4. For the oncoming 
flow velocity of 5 m s-r the radial velocity profiles at 
different angular positions are shown in Fig. 5. The 
temperature profiles at different angular positions 
around the cylinder for 5 m SC’ oncoming flow velocity 
are given in Fig. 6 and for 100 m s-’ are in Fig. 7. The 
local Nusselt numbers around the cylinder are given 
in Fig. 8 for differ’ent oncoming velocities. 

In the second case the heat transfer from the cyl- 
inder to the fluid is calculated for the surface tem- 
perature of 900 K and free stream temperature of 300 
K. For this case the variation of local heat transfer 

coefficients with angular position at different 
oncoming velocities are obtained and given in Fig. 9. 
For comparison, evaluating the physical properties 
at film temperature, the local Nusselt numbers for 
incompressible flow are also obtained and given in 
Fig. 10. 

The thickness of thermal boundary layer is higher 
than the hydrodynamic boundary layer. Therefore, 6, 
is chosen as a criteria to compare with r to show how 
important the use of cylindrical form of equations. 
For case one the ratio of 6,/r is approximately 0.05 
which is significant at 100 m SC’ oncoming flow 
velocity. On the other hand, for 5 m s-’ oncoming 
flow velocity this ratio is about 0.20 which shows that 
at low oncoming flow velocities and small pipe radius 
it is worthy to use the cylindrical form of boundary 
layer equations to obtain precise results. 



2682 H.KARABLJLUT andO. E.ATAER 

E &=900 K 

Fig. 5. Profiles of 24 component of velocity. 

_iLEE ,,,,,, i( ,,,,, l,__~,_L,_I 

D 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 I.1 1.2 

I%1 (mm> 
Fig. 6. Temperature profiles at different angular positions. 

Heat transfer is considerably influenced by the flow 
conditions around the cylinder. The local Nusselt 
number has highest value at stagnation point and 
decreases by angular position up to separation point 
as shown in Figs. S-10. 

At low values of temperature difference between the 
free stream and surface temperature it is found that 
the results obtained from this analysis are in agree- 
ment with the experimental results given in the iitew- 
ture [IO]. For the oncoming velocities of 33 m s-l and 
155 m s-j which corresponds to Re of 21000 and 
99 000, respectively, and the temperature difference of 
100 K the theoretical results are obtained and com- 
pared with experimental data in Fig. 11. Slight devi- 
ation of the results at high Reynolds numbers are due 

to the effects of turbulence which is not considered in 
this study. 

In the case of high wall temperature separation of 
boundary layer takes place at lower angular positions 
and about 99” within the oncoming velocity range 
studied. 

For case one separation of boundary layer takes 
place about 110”. It is possible to determine the exact 
locations with smaller angular step sizes, 

The effect of second order angular derivative of 
tangential velocity, a2u/#, was investigated and it is 
found that it has a minor delaying effect on the 
location of separation point either the flow is com- 
pressible or incompressible. 

Before 90” the velocity profiles are consistent with 
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Fig. 8. Nusselt number (T, = 300 K, T, = 900 K). 

boundary layer concept. After 90” the consistency 
deteriorates gradually and the profile at the separation 
point is completely inconsistent with the concept. The 
same tendency is displayed by the temperature 
profiles. 

The radiative heat transfer is ignored in the analysis 
and it may be considered separately at high surface 
temperatures. The effect of buoyancy force is also 
ignored, but its effiect may be significant when its direc- 
tion is the same with the pressure gradient at high 
surface temperatures. 

CONCLUSIONS 

Results show that at high temperature differences 
between free stream flow and surface temperature it 

is necessary to consider the compressibility of the fluid 
in the analysis. 

As indicated above the result of this study is in 
agreement with the experimental results. Therefore, 
the results obtained from this analysis can be used 
satisfactorily in the practical applications either the 
experimental data is available or not. 

The local Nusselt number is considerably different 
for cooling and heating of the tube due to the com- 
pressibility and changes in physical properties of fluid 
with temperature. 

This matrix scheme has the advantages such as 
using less grid number by introducing non-uniform 
grid dimensions, satisfying the derivative boundary 
conditions easily and avoiding tedious algebraic oper- 
ations. 
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Fig. 10. Comparison of compressible and incompressible treatments. 
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